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Unified constitutive models are characterized by the use a single
inelastic strain rate term for treating all aspects of inelastic deformation,
including plasticity, creep, and stress relaxation under monotonic or cyclic
loading. The structure of this class of constitutive theory pertinent for
high temperature structural applications is first outlined and discussed. The
effectiveness of the unified approach for representing high temperature
deformation of Ni-base alloys is then evaluated by extensive comparison of
experimental data and predictions of the Bodner-fartom and the Walker
models. The use of the unified approach for hot section structural component
analyses is demonstrated by applying the Walker model in finite element
analyses of a benchmark notch problem and a turbine blade problem.

INTRODUCTION

It is well-known that accurate prediction of component fatigue lives is
critically dependent on the success with which local inelastic stress/strain
states in the vicinity of holes, fillets, and other strain concentration sites
can be calculated. Stress/strain computations for hot section components are
complicated by two factors: (1) complex component geometries, and (2)
nonlinear material behavior associated with high temperature creep-plasticity
effects. The latter factor is particularly significant for turbine engine
components in view of the fact that the combinations of centrifugal,
aerodynamic, thermal and other mechanical loads that typically occur in a
flight operation are so severe that they tend to drive the underlying material
response beyond accepted limits fcr linear elastic behavior and into the
regime characterized by inelastic, time- and temperature~dependent
deformation, thereby rendering elastic analysis methodologies inapplicable.
Thus, an accurate account of geometrical complexities, three-dimensional and
inelastic effects of hot section components requires a nonlinear finite-
element methodology with an advanced material constitutive model appropriace
for high temperature applications.

* Work supperted by NASA Lewis Res2arch Center through Contract No. NAS3-
23925.
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Advanced constitutive models which have been developed for high
temperature applications are generally based on the unified approach,
utilizing a single inelastic term to encompass all aspect of inelasticity,
including plasticity, creep, and stress relaxation. Unified constitutive
models which have been proposed in the literature include those of Walker [1],
Bodner-Partom [2,3], Miller [U4], Krieg, Swearengen and Rhode [5], Chaboche
[6], Robinson (7], Hart [8], and Lee and Zaverl [9]. Of these newly proposed
constitutive models, only a small number of them have been used in conjunction
with finite-element methods for structural analysis applications. Despite the
limited experience, the earlier works [1] clearly demonstrated that the
unified approach 1is entirely compatible with three-dimensional inelastic
finite-element formulations, and constitutes a new approach for structural
analysis which has heretofore been based on classical concepts with uncoupled
creep-plasticity models. In avoiding the simplified assumptions of classical
theory, the unified theory can more realistically represent the behavior of
materials under cyclic loading conditions and high temperature environments.

A Jjoint effort by Southwest Research Institute and Pratt & Whitney
Aircraft has been underway for the past two years [10,11] to: (1) develop
unified constitutive models for representing high-temperature, time-dependent
inelastic deformation of initially isotropic cast nickel-base alloys, and (2)
apply a unified constitutive model for hot section component analysis. This
effort is funded under the HOST (Hot Section Technology) Program managed by
NASA Lewis Research Center. The objective of this paper is to summarize the
results to date concerning the use of the unified approcach for modeling high
temperature deformation of nickel-base alloys and for structural analysis. In
this paper, the structure of unified constitutive theories pertinent for high-
temperature structural applications is first outlined and discussed. The use
of the unified approach for representing high temperature deformation is then
evaluated by extensive comparison of experimental data of a nickel-base alloy
and predictions of two unified models: the Bodner-Partom and the Walker
models. Finally, the use of the unified approach for hot section structural
component analyses is demonstrated by applying the Walker model to finite
element analyses of a benchmark notech problem and a turbine blade problem.

OVERVIEW OF UNIFIED CONSTITUTIVE MODELS

The "unified" models are inherently incremental (rate formulation),
retaining the separation of elastic and inelastic behavior and the assumption
of plastic incompressibility. Thus,

N P (12)

and

éﬁk = 0. (1b)

All inelastic behavior |is repQ%Fented in the single term é?.. For small
deformation, the elastic term, ¢ follows Hooke's law. Deveﬂcpment of the

250
inelastic strain rate term generéihy includes three components: a flow law, a
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kinetic relation, and a set of evolutionary equations for the internal
variables describing the development of hardening and recovery processes due
to deformation and thermal histories. An extensive review of the general
forms for these components is given in [10,12].

Most models use the generalized form of the Prandtl-Reuss flow law, i.e.

.p - -
€1y * x(si:j niJ) (2)
where is the deviatoriec stress, Q is also a deviatoric tensor often

referreJJto as the equilibrium stress,Jback stress, or kinematie hardening
variable, and ) is a scalar coefficient incorporating isotropic hardening. In
one model examined (Bodner-Partom), the Q is dropped and directional
hardening is included in an incremental scala}Jfashion in the coefficient a.
Eq. 2 defines the direction of inelastic flow with respect to the applied
deviatoric stress SiJ or the effective stress SiJ - giJ'

The functional relationship between the scalar increments of strain rate
and stress and the temperature, T, and internal variables, X is called the
kinetic relation, e.g.:

i’

p _
02 = F(JZ’ T, Xi) R (3)
where
p_.l1:p :p
DI = 5 eiJ sij
and
-1
Jp = 5085y - 8, (8, -9, )

The number of internal variables, Xi’ used is arbitrary but usually is
restricted to two; one representing isotropic hardening and the other
directional (kinematic) hardening. At high temperatures, the evolutionary
equations for the internal variables are based on the well-accepted Bailey-
Orowan theory for a hardening process proceeding with accumulating deformation
and a recovery or softening process proceeding with time. The evolution rate
of an internal variable is then the difference between the hardening rate and
the recovery rate.

Thermal history effects are generally modeled by including thermal terms
in the evolution equations for the isotropic and directional hardening
variables {12,13]. The general forms of the evolution equations for the
isotropic hardening variable, K, and the directional hardening variable,
nij’ are [12]:

K = h1(K)t:11 - r(T,K) + 91(K,T)’i‘ (1)
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nij z hZ(QiJ)MiJ - d(nij,

)T Wi

T)NiJ - rZ(Qij’T)Vij (2)

+ 02(91

¥’ J

where hq, £qy and o, represent, respectively, the hardening, static thermal
recovery, and thermal history functions for K; h2, d, Poy and 0, represent the
hardening, dynamic recovery, static thermal recovery, and thermal history
functions for Q.. , respectively; N. ., Vi and W.;. are directional indices
related to unitljvectors represenﬁ%%g piastic s%ﬂain rate, stress, or the
directional hardening variable [12]. The measure of the hardening rate, M, is
taken as either the inelastic strain rate sgj or the inelastic work rate,

Wp = cijeij°

The appropriate forms of o, and 0, are not very well established at this
time. A general approach f&r mod%ling thermal history effects is to
express 0, and 0, as functions of the internal variable and temperature
[12,13]. 'New ingernal variables may also be introduced [14]. In a particular
approach (1,11], o, and e% are assumed to depend on temperature only and are

taken as functions représented by variations of material constants with
respect to temperature [1,11].

In the following sections, extensive experimental correlations with two
specific models, Bodner-Partom [2,3] and Walker [1], will be presented. While
following the general form outlined above, these two models differ
considerably in detail but both have found considerable use in high-
temperature problems. Details of both sets of equations are given in Tables !
and 2.

EVALUATION OF THE BODNER-PARTOM AND THE WALKER MODELS

Extensive experiments were conducted on a cast turbine blade or vane
alloy (PWA B1900+Hf) over the entire range of conditions experienced by hot
section components, which inc%ude tem%erature ranging from room temperature to
1093C, strain rates from 107! to 107¢ sec™' and strain of * 1 percent. The
B1900+Hf alloy has a grain size of .8 mm (ASTM No. -2 to -3), a y° size of
0.9 um in the fully heat-treated condition, and low porosity. All specimens
were obtained from a single heat.

Testing included isothermal tension, creep, stress relaxation, cyclic
loading (with and without mean stress or hold time), thermomechanical fatigue
(TMF) cycles, and proportional and nonproportional biaxial strain cycles.
Details of the experimental procedures are described elsewhere ([11]. As
descriped in [11], the material constants for the Bodner-Partom model were
derived from uniaxial tension data only, while the Walker model required, in
addition, a small amount of cyclic data. Tables 3 and 4 summarize the Bodner-
Partom and the Walker model constants for B1900+Hf, respectively. Formalized
procedures for developing model constants are being developed [11]. In the
past, this function has been a major detraction from use of these models. The
remaining cyclic, creep, relaxation, and biaxial data are predictions from
each model.
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A. Deformation Under Uniaxial Tension, Creep, and Cyclic Loading

Figure 1 shows monotonic tensile results and corresponding mode
calc*lations at three temperatures and a constant strain rate of 8.3 x 107
sec™'. These monotonic stress vs strain data are used to establish the
constants for the evolutionary equations of the internal variables describing
hardening and recovery behavior. In the case of the Walker model, the cyclic
stress-strain curves are needed, in addition, in order to differentiate
between the isotropic and directional components. Similar tensile data over a
wide range in temperature and strain rate are given in Figure 2. Temperature
and rate variations are needed to fix the constants related to the kinetic
equations. At 760 C (1400 F), hardening mechanisms are dominant, while at
1093 C (2000 F), the recovery terms in the evolutionary equations become
dominant. The transition between hardening and recovery is dependent on both
temperature and strain rate. At 760 C, the Walker model includes a strain-
aging term which accounts for the region of negative strain-rate sensitivity.

Figure 3 shows the correlation for steady-state creep rate as a function
of the applied stress at four temperatures. The hardening-recovery transition
is evident in these data also. These results are predictions obtained from
the monotonic tensile data.

A sample cyclic stress-strain curve at 1093 C is given in Figure 4.
These are saturated (stable) loops after a small amount of cyelic hardening.
Cyclic hardening or softening is included in the models. Cyclic stress-strain
data obtained by incrementally increasing the strain range for completely
reversed cycling (R = -1) is summarized in Figure 5 for four different
temperatures. Here again, it should be emphasized that the Bodner-Partom
model predictions are based on monotonic input data only.

The effects of imposed compressive and tensile mean strains on the cyclic
constitutive behavior of B1900+Hf have also been investigated. The results
for 760 C are summarized in Figure 6, with corresponding model predictions
using both the Bodner-Partom and the Walker theories. For purposes of
comparison the half stress range (40/2), half cycliec plastiec strain
range (Ae /2) and mean cyclic stress at both the first and sixth cycle are
plotted Wersus the half strain range (Ae/2) for R ratios (minimum strain/-
maximum strain) of 0, -1, and -=. Two important observations in Figure 6 are:
(1) the experimental and theoretical saturated cyclic stress-strain curves
(Ac/2 - Ae/2 curves) appear to be unique at a particular strain rate and
temperature and are independent of the R ratio, and (2) both unified models
predict a drift in the mean cyclic stress which is not always observed in the
experimental data.

Stress relaxation tests were performed by holding strain at various
locations of the hysteresis loops for a two minute period. Figure 7 compares
model predictions and experimental results of stress relaxation during strain
hold on the unloading portion of the saturated hysteresis loop of B1900+Hf at
1093 C. The Bodner-Partom calculations agree well with the experimental data
for strain holds at .6% and .55%. At .5%, the experimental result indicates
reverse stress relaxation as the stress is slightly increased from compression
to tension during the hold period while the Bodner-Partom model predicts a
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constant stress with essentially no stress relaxation. In principle, the
reverse stress relaxation process is capable of prediction by the equilibrium
stress approach. However, no stress relaxation calculations are currently
available for the Walker model.

B. Deformation Under Thermomechanical Cycling

In practice, component parts are subject to simultaneous load and thermal
cycling and a dominant failure mode is thermomechanical fatigue (TMF). The
ability of a unified constitutive model to predict response to TMF cyeling is
of prime interest and constitutes a rigorous test of the model. It is of
further interest to determine whether a model based on equilibrium isothermal
data can handle the nonisothermal response problem. Numerous experimental TMF
cycles have been run with both in-phase and out-of-phase temperature-strain
cycles and with and without hold time. Figure 8 presents a typical data vs
model correlation for a simple in-phase cycle. Similar results are obtained
for an out-of-phase cycle with a 60 second strain hold at maximum compressive
strain, Figure 9. The cycle time for both the in-phase and out-of-phase
cycles was 60 seconds. The correlation with both isothermally-based models is
reasonably good, indicating that no obvious correction is needed to account
for the rate of change in temperature. For materials exhibiting strong
dynamic strain aging effect or microstructural changes during thermomechanical
cycling, this may no longer be the case and extra terms in the constitutive
model may be required.

C. Deformation Under Biaxial Loading

Another critical test for the unified models is their ability to handle
complex multiaxial stress or strain histories. Hardening laws under
nonproportional loading still pose a problem in classical rate-independent
plasticity. Most of these theories are based on initial yield and subsequent
multiple loading surfaces with a normality rule. While unified theories can
be developed based upon yield surface or plastic potential concepts [6-9], the
models studied here assume viscoplastic flow occurs at all finite stress
states other than S, ., = Q,, (Bodner-Partom assumes Q,, = 0). The evolutionary
equations in combinﬁ%ion alth the flow law define tﬁé incrementally-developed
hardened state for each material direction.

Figure 10 shows experiment-model correlations for a strongly
nonproportional strain cycle in which the axial and torsional strain are
controlled to have the same effective cyclic strain amplitude with a 90° phase
difference between the two inputs. This results in the nearly circular stress
trajectories shown in Figure 10 along with the individual stress-strain
hysteresis loops. The models, based on uniaxial data, show good qualitative
agreement with some overestimate of the stress amplitudes.

Previous results with Hastelloy X [10] had shown that cyclic strain
hardening under similar out-of-phase, nonproportional loading was
significantly greater than that obtained under uniaxial or other proportional
loading paths. For B1900+Hf, sequential proportional and nonproportional
straining histories produced no differences in hardening behavior at all
temperatures from 20 C to 980 C. There seems to be a difference in this
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aspect of hardening between the precipitation-hardened alloys and dominantly
solid solution alloys. The nonproportional strain paths also provide useful
information on the correct form of the flow law. In the strain trajectories
of Figure 10, there is observed a phase lag of approximately 20° between the
inelastic strain rate ¢, and the deviatoric stress Sij' This phase lag is
reascnably predicted by ‘the Walker model through the use of the equilibrium or
back stress term, Qij‘ In the Bodner-Partom approach, ¢? and Sij are assumed

. i
coincident. J

Figure 11 shows another more complex nonproportional path where the
frequency of the shear strain is twice that of the axial strain. Again,
qualitative agreement with the models is good; however, the hysteretic energy
loss seems to be greater in the models than in the experiment.

HIGH TEMPERATURE STRUCTURAL ANALYSES

Preliminary effort to demonstrate the utility of the unified models for
component analysis has been accomplished at Pratt & Whitney Aircraft. For
this purpose, the MARC nonlinear finite element computer program was the
vehicle for incorporating the viscoplastic models. The incorporation in the
MARC program was achieved by means of an initial stress technique. All of the
material nonlinearity in the constitutive equations is put into an initial
load vector and treated as a pseudo body force in the finite element
equilibrium equations. Because the models form a "stiff" system of
differential equations, it is necessary to form the incremental constitutive
equation appropriate to the finite element load increment by means of a
subincrement technique. Then the constitutive equations are integrated over
the small subincrements to form an accurate representation over the finite
element load increment. The integration of the constitutive equations is
currently performed by using explicit Euler forward differences with
subincrement time step sizes determined by convergence and stability
criteria. Other integration schemes are under investigation in the attempt to
improve computational efficiency.

A. Benchmark Notch Analyses

The MARC finite-element code and the Walker model were used to analyze a

number of benchmark notch problems. Elevated temperature testing of
instrumented notch round specimen was also conducted to generate notch
displacement data for verification of the anzalytical methodologies. The

benchmark notch testing was conducted on specimens of design shown in Figure
12a for six load patterns at 871°C over load ranges sufficient to result in
short time 1inelastic behavior and over load time sufficient to induce
significant time-dependent inelastic notch strain. The lcading conditions and
the experiment procedures for the benchmark notch experiments are described in
(11]. In these experiments, the radial and the diametrial displacements at
the notch throat were measured.

The finite-element mech for the benchmark notch specimen is shown in
Figure 12b. In one of the benchmark experiment, the notch specimen waf loaded
under monotonic tension at a nominal strain rate of 2x1077 sec™'. The
variation in the diametrial displacement at the nctch throat with the applied
load is presented with model prediction in Figure 13. At the imposed nominal
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strain rate of 2x10~2 sec~!, the limit load was 35,800N (8050 1lb). Finite
element load versus displacement predictions agree well with the test data at
low values of diametrial displacement, but diverge at strain conditions
indicative of bulk yielding in the notch. The limit load is overestimated by
18%.

In another benchmark experiment involving dwell, the notched specimen was
cycled at + 331, 2352, *365, +386, and * 414 MPa for 10 cycles at each stress
level. Additionally, a minute hold was applied at both maximum tension and
compression. The variation of the peak-to-peak notch displacement and the
cyclic inelastic notch displacement with the cycle number is shown in Figures
14a and b, respectively. As noted in Figures 14a and b, the finite element
analysis predicts the peak-to-peak variation in the throat diamectrial
displacement to within 14%, but underestimates the cyelic inelastic notch
displacement by nearly 60% at the highest test loads. However, it should be
noted that the inelastic notch displacements are quite small.

B. Inelastic Turbine Blade Analysis

The MARC code along with the Walker constitutive model were used to
analyze a turbine blade under a simulated flight loading spectrum. The FEM
blade model with the temperature and engine RPM flight history are given in
Figure 15. The flight history, representative of a commercial airline, has
some high transient response early followed by steady cruise conditions.
While thermal and mechanical response is computed continuously for the
complete blade, we will present here a comparison only for a selected element
between a tctally elastic analysis and the viscoplastiec analysis. This
comparison is given in Figure 16. Besides showing the difference in response
for a given problem by including viscoplastic behavior, this exercise provides
some comparison of the relative computational times for the two problems. 1In
this case, the viscoplastic computation time was about seven times as great as
for the elastic case. More recent work has reduced this ratio to less than

two [15].
CONCLUSIONS

Rapid advances are being made in the development of strongly nonlinear,
time- and temperature-dependent constitutive models for metals used in gas
turbine hot section components. These models, in conjunction with finite
element structural analysis codes, will allow accurate prediction of stress
histories and strain accumulation of components in service. This capability,
particularly for regions of local stress concentration, is essential for
reliable input into cumulative damage or crack initiation algorithms used for
component life prediction. An-increased coupling between constitutive models
describing stable deformation states and limit conditions describing the
initiation of local material instability or failure is needed.
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Stress a ¢ = 0,002 (MPa)

MONOTONIC TENSION
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FIGURE 1. CNMPARISON OF CALCULATED AND EXPERIMENTAL
STRESS-STRAIN CURVES AT THREE TEMPERATURES
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STRAIN-RATE TENSILE TESTS
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CYCLIC STRESS-STRAIN CURVES
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CONSTITUTIVE MODEL DEMONSTRATED
IN A THERMAL-MECHANICAL FLIGHT SIMULATION
OF A TURBINE BLADE
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FIGURE 15. FLIGHT SPECTRUM AND FEM BLADE MODEL USED IN A
THERMAL-MECHANICAL FLIGHT SIMULATION
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FIGURE 16. COMPARISON OF ELASTIC VS VISCOPLASTIC ANALYSIS
FOR A SELECTED BLADE ELEMENT
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